KU LEUVEN

CO₂ emission abatement in the power sector: on EU ETS and renewables

Erik Delarue Research Fellow University of Leuven (KU Leuven), Belgium

erik.delarue@mech.kuleuven.be

Based on joint work with Kenneth Van den Bergh, Denny Ellerman, Hannes Weigt and William D'haeseleer

- Europe's climate policy on GHG emissions
- \Box CO₂ abatement in the power sector
- Interaction between EU ETS and renewables
- Concluding remarks

Outline

- Europe's climate policy on GHG emissions
 - EUA price evolution
 - Current problems and how to fix them
- \Box CO₂ abatement in the power sector
- Interaction between EU ETS and renewables
- Concluding remarks

Europe's climate policy on GHG emissions EUA price evolution

35 30 25 EUA price [euro/tonCO₂] 20 15 10 5 0 Jan 2009 Jan 2010 Jan 2011 Jan 2012

Second phase: 2008-2012

Europe's climate policy on GHG emissions EUA price evolution

Europe's climate policy on GHG emissions

Current problems and how to fix them

- Low prices
 - Economic recession 0
 - Inflow of international credits 0
 - Separate policies (e.g., renewables targets) 0

Figure 2: Historic and likely future profile up to 2020 of supply and demand

- Self-reinforcing effect
 - Banking 0
 - Surplus of allowances 0

Europe's climate policy on GHG emissions

Current problems and how to fix them

Reform options

- Increase demand for allowances
 - Extend scope of ETS to other sectors
- Decrease supply for allowances
 - Increase EU target to 30% in 2020
 - o Retire number of allowances
 - Revise linear reduction factor
 - Limit access to international credits
- Discretionary price management
- Discretionary quantity management

Reform plans

1. Backloading:

temporary withdrawal of number of allowances in the short term (phase 3)

2. Market stability reserve:

quantity management to stabilizeETS price in the long term (phase4)

Outline

Europe's climate policy on GHG emissions

- \Box CO₂ abatement in the power sector
 - CO₂ emission drivers
 - Fuel switching as major abatement technology
- Interaction between EU ETS and renewables
- Concluding remarks

CO₂ abatement in the power sector

CO₂ emission drivers

- Fuel mix, age, technical parameters, etc.
- Might change in the long term (years)

Residual load

- Electricity demand minus renewables generation
- Might change in the medium term (months)

Generation costs

- Marginal generation costs of conventional units
- Might change in the short term (days)

CO₂ abatement in the power sector

CO₂ emission drivers

	Conventional portfolio	Residual load	Generation costs
General influences/policies	Cost, legislation, etc.	Economic growth/ downturn, energy efficiency, electrification, RES obligation, etc.	Fuel prices.
CO ₂ cost	Changes levelized cost of electricity, making low- carbon technology more interesting	Electricity price increase, reducing demand, renewables investments	Marginal costs and ranking in merit order

CO₂ abatement in the power sector

Fuel switching as major abatement technology

 CO_2 price where $MC_{coal} = MC_{gas}$ is **switch price**

Pure operational, short term

Outline

- Europe's climate policy on GHG emissions
- \Box CO₂ abatement in the power sector
 - I Interaction between EU ETS and renewables
 - Framework
 - Quantification of interaction effect
- Concluding remarks

Framework

Framework

Given the historical amount of renewable injections, what is the effect on ...

- the EUA price?
- CO₂ emission displacement within the EU ETS?

Quantification of interaction effect

ETS-price assumption

- All equivalent abatement possible in other ETS sectors at current CO₂ price
- Power sector experiences EU ETS as CO₂ tax
- Renewables cause only CO₂ displacement away from power sector (outer limit)

ETS-cap assumption

- No change abatement possible in other ETS sectors at "any" CO₂ price
- Power sector experiences EU ETS as sectorial cap
- Renewables cause only CO₂ price decline (outer limit)

Quantification of interaction effect

- Approach
 - Simulate the impact of renewables deployment according to the 2 extremes
 - Determine all possible situations between these 2 extremes
 - The 'real' solution lies somewhere on this curve
- Limitations of the analysis
 - Conventional generation system is assumed to be fixed
 - Historical emissions assumed as cap
 - Less banking in absence of RES?
 - No low-carbon investments triggered by a high CO₂ price
 - All wind, sun and bio assumed to be the result of support schemes

16

KU LEU

Quantification of interaction effect

- CO₂ displacement according to ETS-price assumption
 - From the power sector to other ETS sectors
 - Respectively 10%, 13%, 16% and 15% of historical emissions

KUI

Quantification of interaction effect

- CO₂ price increase according to <u>ETS-cap assumption</u>
 - CO₂ price needed to keep emissions constant without renewables
 - In 2009, impossible to reach historical emissions

CO ₂ price [EUR/tCO ₂]	OBS	NORES
2007	1	15
2008	22	68
2009	13	00
2010	14	474

Quantification of interaction effect

Impact curve

Range of possible effects of historical renewable generation in terms of CO_2 price reduction and CO_2 displacement from the power sector towards other ETS sectors.

- All wind, sun and bio assumed to be the result of support schemes
- No investments in generation capacity
- Historical emissions assumed as cap

Quantification of interaction effect

The intersection of the impact curve with the MACC of the other ETS sectors

Concluding remarks

- General conclusions
 - EU model
 - The CO₂ price decrease caused by renewables deployment turns out to be likely significant
 - CO₂ emission displacement from the power sector to other ETS sectors due to renewables deployment can be up to more than 10 % of historical emissions in the power sector

Concluding remarks

- Reflections on 2030 framework
 - EU ETS
 - If prime instrument for climate action, make way for stable high enough price
 - Backloading
 - · Good first step, but impact limited
 - Current ETS price far too low to trigger coal-to-gas fuel switching (order of 40 €/ton)
 - Market Stability Reserve
 - Impact remains to be seen & further studied

Concluding remarks

- Reflections on 2030 framework
 - RES targets? \rightarrow Be aware of interaction effects
 - To be further studied
 - RES do not decrease CO₂ emissions but decrease ETS price
 - If RES targets to be continued → market compatible support mechanisms
 - Higher costs

More information?

See website research group in Leuven (Belgium):

http://www.mech.kuleuven.be/en/tme/research/energy_env ironment/Energy_and_environment

• Including publications

erik.delarue@mech.kuleuven.be

